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The purpose of this paper is to solve analytically and numerically the second approximation coefficient
in the density expansion of the binary distribution function. A generalized analytic formula can be ob-
tained for the second approximation coefficient. The analytic formula is computed numerically for the
restricted primitive model of an electrolyte solution. Then the numerical solution of the second approxi-
mation coefficient is compared with its approximate analytic results. Moreover the numerical solution is
compared with the available Monte Carlo data, hypernetted chain approximations, and with other re-
sults for three primitive-model (1-1, 2-1, and 2-2) electrolyte solutions.

PACS number(s): 82.60.Lf, 05.20.—y, 61.20.—p

I. INTRODUCTION

The binary distribution function (BDF) is one of the
most important functions of statistical mechanics. The
earliest integral equation theories for the BDF for hard
spheres were due to Born, Green, and Yevick [1]. The
Kirkwood superposition approximation, when applied to
the stationary Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy [2], gives rise to the Born-Green-
Yvon (BGY) equation. In a recent article [3] the BGY
integral equation for hard spheres had been studied by
using two closures that provide improvements to the
traditional Kirkwood superposition. For the time being,
the primitive model (PM) is the most well studied model
of electrolyte solutions. The hypernetted chain (HNC)
approximation has been published [4] and the BDF inves-
tigated in real electrolyte solutions by the application of
the PM.

In several review articles [5—8], Wheaton has solved
the fundamental statistical mechanical (BBGKY) hierar-
chy. Representing the electrolyte solution with the
chemical model along with his technique, Wheaton ob-
tained expressions for the BDF for both dilute and con-
centrated solutions. By using the PM to represent the
electrolyte solution we could obtain, analytically, an ex-
pression for the solution of the second approximation
coefficient (SAC) by using the three-dimensional Fourier
integral [9] for its solution. Computationally convenient
theoretical approximations for the SAC are used. Our
purpose is to carry out an analysis that gives the analyti-
cal and the numerical solution for calculation of the
SAC.

The outline of this paper is as follows. In Sec. II we
derive an analytical expression for the SAC. Our analytic
results are compared to the available Monte Carlo (MC)
[10,11] data and with many theoretical results for the PM
of 1-1 electrolyte solutions. In Sec. III we solve the SAC
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numerically. In this section we are specifically concerned
with the accuracy of the numerical solution of the SAC
in calculating the density expansion of the BDF. We
then compare in detail the numerical solution with a
more refined treatment embodied in the HNC approxi-
mation [11] and MC calculations. Our calculations are
restricted to the cases where some results of MC and
HNC calculations are available for comparison.

II. ANALYTICAL SOLUTION

A. Density expansion for the binary distribution function

According to the PM, let each ion in the solution be
represented by a charged hard sphere with a center-to-
center distance g;;. The direct potential between ions i
and j with ionic charges e; and e;, respectively, and

separated by a distance r is given by
v =V;tVi, 2.1

where V;; =zizje2/Dr is the Coulomb potential with the
dielectric constant D. z; and z; are the valences of ions of
type i and j and e is the magnitude of electronic charge.
The short-range potential V] is defined by

® , r <a

; [thus exp(—BV;)=0],

0, r>a; [thus exp(—BV])=1], 2.2

* —
Vi=

where B=1/kT, K is Boltzmann’s constant, and T is the
absolute temperature. The basic idea of constructing a
convergent expansion for the BDF goes back to the work
of Schmitz [12,13]. Bogoliubov’s density expansion for
the BDF is [2,14,15]
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1+§nkf0wdrk{[exp(—BV,~k—B #)—1][exp(—BV; —BV)—11}+0(n?) |,

nk='an=’VkN/V y (2.3)

where n; is the density of ions of type i, v (=v_ +v_) is the number of cations (positive ions) v, and anions (negative
ions) v_ produced by dissociation of one molecule of the electrolyte, and N is the total number of ions in the volume V.
Using the density expansion due to Bogoliubov [14] and Schmitz’s iteration procedure [13], Ebeling and Krienke [16]
obtained a general expression for the density expansion of the BDF, which, in the region » > a, has the form [17]

Fij(r)=exp[G,-j(r)]

—Gik(r)ij(lr—r’|))+O(n2)} , r>a.

The function G;;(r) is the pair correlation function with a
distance r between a particle of species i and a particle of
species j. The pair correlation function may be written,
in terms of Debye-Hiickel k, the parameters x =«xr and
t =ka, and the plasma parameter € (=e“«/DkyT), as

t
G,-j(x)=t-:q,~j(e_x/x) ) qij=qji=—z,-zj ‘l_i_t‘ (2-5)
The Debye-Hiickel « is defined by [4]
3 4 , 172
= Dk, T 2 n;e; (2.6)

Similarly, one can write the density expansion of the
BDF [Eq. (2.4)] in terms of the parameter x =kr as

Fij(x)=exp[G,-j][1+Q,-j(x)+0(n2)] . 2.7)

The contribution of the second-order term can be written
as

n,-j(x)=;l_,7 3 [ 1Ckx1Cpllx —x'])

—Gp(x")Gp(Ix—x'])]dx’, (2.8)

where

Ci(x")=exp[Gy(x)]—1 . 2.9

The function Cj(x’) can be obtained from Eq. (2.9) by
changing the indices i and k to j and k and the variable
x' to |x —x'|. The expression (2.8) will be denoted by the
second approximation coefficient. In the next following
subsection, the three-dimensional Fourier transforma-
tions will be used to obtain an explicit expression for its
analytic solution.

B. Second approximation coefficient

In this section we shall point out the method for
evaluating an explicit expression for the analytical solu-
tion of the SAC [Eq. (2.8)]. By substituting the three-
dimensional Fourier transformation, which is [9]

143 n, [ dr'({exp[ Gy (r)]—1) {exp[ Gy (Ir—r'|)]— 1}
k

(2.4)

(2.10)

3
Cirlx’)= S Cutpre®dp , p=Ipl,

1
2
into Eq. (2.8) and taking into account the inverse Fourier
transformations

Ca(p)= [e™®PXCy(x"dx"?, 2.11)

we get

a,.j<p>=;% S m[Ca(PIC(p) =G (p)Gy (p)] . (2.12)
k

Since we are only interested in the range of values

t<x <o, the solution of Eq. (2.12) will require a

knowledge of ;;(x) within this range. Using Taylor

series expansion, we can rewrite the right-hand side of
Eq. (2.9) as

© L)%, —ax’

Cik( x’):; 2 iei’ieb__

(2.13)
a=1 a! x

a

Substituting this result into the integral equation defined
by Eq. (2.11), we get

Calp)=4m 3, (SZ‘)G @, (pa) (2.14)
where o .
<I>,~k(p,a)=ft:e_"""x"(“_”—Si—n%Eldx’ , lx=Kay .

(2.15)

Now it is convenient to introduce a new variable, say, u
such that x’'=u +t;; substituting this into Eq. (2.15) we
obtain
o, (a—1)
D, (p,a)=e at'kti;(a—” 2 ( _l)r__r,_rti;rl_}(P’a) ’
r 1

(2.16)

where (a—1),=(a—2+r)/(a—2)}; (see Ref. [9]). Ac-
cording to Egs. (2.15) and (2.16) it is obvious that the
function II; (p,a) has the form
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I, (p,a)= sin(pt;; )fowu e " *“cos(pu)du

1
p
+cos(pty ) f ow u'e " “sin(pu)du

(2.17)

The function I, (p,a) is the sum of two integrals; one of
them is simply the Laplace transform [9] of sin(pu) and
the other is the Laplace transform of cos(pu) with respect
to the variable u. The problem thus reduces to the evalu-
ation of the two integrals, on the right-hand side of Eq.
(2.17), which are easily solved to give
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1 | asin(pty)
T, (p,a)=—
ik\P p p2+a2

cos(pty )
+ 2P (2.19)
pta
Consequently, one can obtain an expression for the func-
tion C; (p) by the combination of Egs. (2.14), (2.16), and
(2.18); thus we have

— ik la—1), 1 @
Cik(P)"‘47Ta§1 —a—!—rgo _T—tik aarFik(P,a) >
£4q;
nik=—‘1”:—*, a=1,2,3,4,.... (2.20
t,-kel

The calculation of Cj(p) is quite analogous to that for

Py Ci(p). From Egs. (2.5) and (2.13), it is seen that G, (p)
Hik(p’a):(_l)r—a cTa(p,a), (2.18)  can be obtained directly by substituting a=1 into Eq.
@ (2.20). Rewriting the function Q;;(p) by substituting C,
where Cjk> Gy, and Gy, into Eq. (2.12), we find
J
167 (@—1), (¥ =1 7§ mj -
Q;:(p)= n __t_—-(r—l)?(_s 1)
Y K3 % , y=1s=0a=1r=0 r! s! Y' 4 *
o o
* o 3p° (p,a,y) | —nanuIlip,a=y=1) (2.21)
[see Eq. (2.16)] , where
(p,a,y)=Tu(p,a)l ;(p,y) . (2.22)

The function I (p,7) can be obtained from I‘ﬂ; (p,a) by changing the indices i/ and & to j and k and the variable a to y.
It is easy to verify that the function II(p,a,y) can be written in an explicit form by substituting the functions I';; (p, )

and T 4 (p,7) into Eq. (2.22), such that

H(Paa/}’):Fl(P,a:’}’)+F2(Paa,)’)+F3(P,ay7’) > (2.23)
where
cos(pt3)—cos(pt,) _ _
F(p,a,y)=ay i+ | L=t g, ta =ty iy (2.24)
1 . . . .
F,(p,a,y)= a[sin(pt;)+sin(pt,)]—y[sin(pt;)—sin(pt,)]} , (2.25)
2(psay 2p(p2+a2)(p2+7/2){ [sin(pt; pty)]—yl[sin(pt; pt4)l}
and
cos(pt;)+cos(pt,)
Fy(prayy)= | S0P (2.26)
2p ta)pt+y*)

The function ;;(p) can then be solved by taking the inverse Fourier transformation of Q;;(p) to find Q;;(x). Our aim
now is to simplify the inverse Fourier transformations, for Eq. (2.21), by dividing it into simplified terms. Now applying
the inverse Fourier transformation Eq. (2.11), one can write Eq. (2.24) as

cos(pty)—cos(pt,)

_a o
Fl(x,an/)—;rt2 o

PP +yipi+yh) | x

sin(px) dp

(2.27)

If we use the partial fractions for the quantity in square brackets on the right-hand side of this equation, we obtain

1
87 ,y2_a2

F,(x,a¥y)=

{—v(e " /ax)[cosh(at;)—cosh(at,)]+ale ""*/yx)[cosh(yt;)—cosh(yt,)]} ,

(2.28)

where the integrations are performed with respect to the variable p. We can also evaluate the functions F,(x,a,y) and
F,(x,a,y) via a method closely analogous to that used in evaluating the function F,(x,a7y). The results are outlined
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here as

Fy(x,a%y)= ii—?’—{( ~ax /g x )[sinh(ats)]—(e ~7*/yx)[sinh(yt;)]}

87 1/ —a
+~1'——Z~(§ 5 {(e " /ax)[sinh(at,)—(e "7 /yx)[sinh(y1,)]} (2.29)
87 Y —a
and
F,(x, a#'y)—g—’ L 7 {(e "**/x)[cosh(at;)+cosh(at,)]—(e ~"*/x)[cosh(yt;)+cosh(yt,)]} . (2.30)
?’

In light of the above-mentioned results Egs. (2.28)-(2.30), one can construct a formula for the function II(x,a,y) by
substituting the indicated equations into the inverse Fourier transformation of Eq. (2.23) to obtain

_1
I(x,ay)= Py

2
—a

{v[(e ™ /ax)sinh(at; )][sinh(at; )+cosh(at; )]

2
Y
—a[(e ""*/yx)sinh(y 1y )][sinh(y2; ) +cosh(yzy )]
+[(e™**/x)cosh(aty )][sinh(at; )+cosh(aty )]
—[(e™"*/x)cosh(yty )][sinh(yty; )+cosh(yty )]}, aFy . (2.31)

It should be noted that this equation is satisfied for all values of a and y except for those (a¢=7y) that make II(x,a,y)
divergent. This divergence is due to the factor [1/(y?—a?)], which has a singularity at equal values of a and y. We
can derive an expression for the function II(x,a=y) in terms of the functions I';;(p,a) and T j (p,7), assuming that
a=y. Then Egs. (2.24)—(2.26) may be written in the forms

2

o a
Fl(p,a—y)—W[cos(pt3)-cos(pt4)] , (2.32)
asin(pt,)
Fypa=y)=—F—, 2.33
2P, a=Y p(pitad) (2.33)
and

N 1

F3(p,a—7/)—m[cos(pt3)+cos(pt4)] . (2.34)

In a manner identical to that used above we can obtain a general formula for the function II(x,a=y). It can be proved
that
1 - alty +1y)

N(x,a=y)=—-——{(e " */ax)[e

Smra _COSh(tik —tjk )(Z]

a(tik+tjk) a('ik+tjk)

—(e ™ /x)[(ty +1y)e
It should be noted that the results represented by Eqs. (2.31) and (2.35) are very important in determining the SAC in
the density expansion of the BDF. It is obvious that the function II(x,a77y) has to be treated differently from
II(x,a=1v). This is displayed clearly in Egs. (2.31) and (2.35).
The procedure of separating the function €;;(x) into two parts is used to obtain elegant formal results or series ex-
pansions that are ordered in terms of ordering parameters. In terms of the results (2.31) and (2.35) we can rewrite the
inverse Fourier transformation of Q,;(P) as

]+ (e ™ )Xe )} . (2.35)

(=1, (y—1) 1 Eqix Eqjk 3
Q; (x)= Enk 2y 3 > t-—(r—l)t—(s—l) 22
b 50,2 “2 r! s! aly! tiketik tjke’jk da" Ay*
X ({(e """’ /x)[cosh(aty,)+(y /a)sinh(aty,)]
—(e_y(x_tf")/x)[cosh('ytik)+(a/y)sinh(1ft,-k)]}/(y2~a2))
(a—1), €4k eqy |® —(u—1) O*
+3 3 (tyety )™~V =52
a=2u=0 alu! tye ik tie ik ! da’

X ({(e ™% fax)[e™* T —cosh(t, — 1, )a]
ik Ji

alty, +tjk) (2.36)

—(e % /x)(e Wty +typ—x)}/a)
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The summations introduced in this expansion include all the different combinations of @ and y. Here a and y are both
integers. This generalization introduced in Eq. (2.36) will have a considerable use in the following subsection. In the
Appendix, a deeper analysis is used to enable us to simplify considerably this expansion.

C. Density expansion techniques

It is shown in the Appendix that the function Q;;(x) can be expanded into powers of 7, .

4
Q,»j(x)= 1;- no(nt)zx { [nﬂ(lo’l)(zl,22 )\I/O’l_}”r]z_ﬂ(lo’Z)(Zl,Zz )\1’0,2+773_7{(10'3)(21,22 )‘I’o)3

K

+0'#H OV (z,,2, )‘1’0,4"‘1757{(10’5)(21 22 )‘I’o,5+7767{(10’6)(21:22 Wo,6]
+[n#"%(zy,2, )‘1’1,0+7737{(11’2)(21’22 )‘1’1,2""'747{(11’3)(21’22 Wy 3
+ 0 H (2,2, )\1’1,4'*'7767{(11’5)(21’22 Wy s
_,_7777{(11,6)(21’22 )‘1’1,6+7787f(11’7)(21 »Z2 )‘1’1,7]

+ [P H P z,,2, )\112’0+1]37-[(12'”(z1,zz )‘1’2,1+7757f(12’3)(21»12 L 2%
+ntH P (2,2, )‘1’2,4'*‘7777{(12’5)(21 22 )‘1’2,5'*'7787{(12’6)(21 122 )W) 6]
P HPONzy,2, )5 o+ H P V(21,25 0P FH PP 2,,2,)¥5

+n'H P zy,2, )‘1’3,4'*'7187{(13’5)(21,22 W3 s
+°HPOz,2, )‘1’3,6+’7107{(13’7)(21’22 W3 41}

2
+ K_q;r”o(’ﬂt )x [7727'[(21)(21’22 )py +"7471((22)(21>22 )<P2+TI67'[(23)(21’22 )p3

+"787'[(24)(21>22 )<P4+77107f(25)(21 »Z22 )¢’5+77127{(26)(21 122)@6]

(2.37)

where the definitions of the coefficients #, ¥, m(»,2), and @,(y) can be found in Egs. (A7), (A8), (A10), and (A13).
Comparisons of the evaluations based on this expression will be made with the numerical solution of €;;(x).
In what follows we have made use of the modified form (DHX) of Debye-Hiickel theory in which the distribution

function is represented by

F(x)=exp(—z;z;efe' " /[x(1+1)]}) .

(2.38)

Moreover, we have made some of Wheaton’s distribution function [8] (derived from the BBGKY hierarchy of equa-

tions)

Fj(x)=exp{z;z;e[ —({e'+(1+1¢ +12/2)[cosh(¢)—1]} /(1+1¢))e ~*/x +0.5[cosh(¢)—1]e ~*1} .

All the computations were carried out with the previ-
ous parameters used in the MC calculation by Card and
Valleau [10], Valleau and Cohen [18], Valleau, Cohen,
and Card [11], and Sloth and Sorensen [4]. The MC cal-
culations have been made for 1-1 electrolytes with
T=298 K, a=4.25 A, and D=78.5 f;or 2-1 and 2-2 elec-
trolytes with 77=298.16 K, a=4.2 A, and D =78.358.
In the following we shall discuss the character of the
effects that can be attributed to the inclusion of the
higher-order terms in the expansion (2.37) for 1-1, 2-1,
and 2-2 electrolytes.

In the first case of 1-1 electrolytes we observed that the
valence factors #\""™(z,,z,) and #3"(z,,z,) have three
constant values. These values are either 2, 0, or —2 for
like and unlike ions according to the exponential values n
and m in the expansion (A9). Certain cancellations that
take place are due to the charge neutrality, which is
based on the fact that like and unlike ions are equal in
magnitude but opposite in sign. An interesting feature is
that each higher-order coefficient ¥, ,, in the expansion

(2.39)

(2.37) is observed to be successively smaller than its
predecessor with increasing concentration. Consequent-
ly, the combination of Egs. (2.7) and (2.37) gives reason-
ably good values for the BDF compared with the so-
called DHX results. In this paper we shall restrict our
comparisons to the 1-1 case where the series expansion
Eq. (2.37) converges quite rapidly for all concentrations
of interest in the range of » shown in Figs. 1 and 2. In
these figures we examine briefly the BDF and compare its
behavior, from the analytical and numerical solutions,
with MC results [10] and the CM approximation Eq.
(2.39). It is clear from the figures that the analytical and
numerical solutions exhibit significantly some deviation
in the analytic solution, which is inevitable due to the
cutoff approximations in the series expansion (A9).
Unfortunately, in the 2-1 and 2-2 cases, comparisons
could not be made. This is interpreted as being due to
slow convergence of the expansion (2.37) in the higher
valence electrolytes. Consequently, the numerical results
for Q;;(x) are inadequate for obtaining an accurate distri-
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r(4)

FIG. 1. Binary distribution functions F;;(r) for the 1-1 primi-
tive model at ¢ =1.0001M. Full lines and dotted lines represent
the numerical and the approximate analytic solutions of Eq.
(2.7), respectively. Dashed lines and dot-dashed lines indicate
DHX results and Eq. (2.39), respectively.

bution function for higher valence electrolytes. On the
other hand, the results for 2-2 electrolytes are a little
more precise than the 2-1 results. As a result of this dis-
cussion, large departures from HNC approximations and
MC points are to be expected for cases of electrolytes of
higher valences (2-1 and 2-2).

R0

r (R)

FIG. 2. Binary distribution functions F;;(r) for the 1-1 primi-
tive model at ¢ =1.9676M. The symbols have the same meaning
as in Fig. 1. The circles indicate the MC results.
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The justification of slow convergence for the series ex-
pansion given by Eq. (2.37) is based on the following ob-
servations: (i) the magnitudes of the valence factors, given
by Egs. (A7) and (AS8), respectively, and (ii) the molar
concentration values. It is readily seen by direct
verification that the valence factors #{™™(z,,z,) and
F#(z,,z,) are rapidly increasing functions for 2-1 and
2-2 electrolytes. It is important to observe that the mag-
nitudes of these factors increase, for like and unlike ions,
with increasing exponentials » and m in the expansion
(A9). Moreover, the coefficients ¥, ,, and the subsequent
terms have more and more power of small parameters
that increase for concentration values lower than
0.0625M. In our opinion, these are the reasons why the
series expansion (2.37) does not converge quickly enough
for higher valence electrolytes.

In general, we observe that the analytical solution re-
sults given here have the disadvantage that they converge
much more slowly for the 2-1 and 2-2 electrolytes than in
the case of 1-1 electrolytes. However, this disadvantage
is offset by a numerical solution method requiring much
fewer calculations per iterations. In Sec. III we shall
sketch the derivation of the basic formula for the numeri-
cal calculation of Q;(x) within the framework of the
BDF approximations.

III. NUMERICAL SOLUTION

A. Numerical treatment

The application of the PM to the density expansion of
the BDF has made possible the calculation of the SAC
numerically. It is shown in Eq. (2.7) that the function
F;j(x) vanishes in the range x <xa. The numerical solu-
tion of Q,;(x) for the PM follows as an immediate conse-
quence, and since (};;(x) decreases rapidly with increas-
ing x, it is expected that the numerical results should be
convenient for the numerical solution to the BDF. By in-
troducing bipolar coordinates in Eq. (2.8), the SAC for
the PM may be rewritten as

21

Q;;(x)===3 ni[o(x,t)—w,(x,1)] , (3.1
KX |
where
w1x,0= [ “uCy(udu f‘:f;scjk(s)ds (3.2)
and
w206,0)= [ “uGy (u)du fIZj:'stk(s)ds . (3.3)

This is because the BDF vanishes exactly for x less than
some finite range x =kr <ka. In order to study the prop-
erties of the integral (3.2), it is convenient to substitute
the functions Cy (x’) and Cy (|x —x’|) into this integral
(3.2). Substituting the results of w(x,?) and w,(x,¢) into
Eq. (3.1) yields an expression for the function Q,;(x) that
depends explicitly on the pair potential functions. The
final result is
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4
3.5 +
3 -
2.5 FIG. 3. F,, and F_, functions for 1-1
electrolytes with ¢ =0.00911M. The circles in-
2 dicate the Monte Carlo points. Full lines indi-
Fi} {r) cate DHX results, Eq. (2.39), and the numeri-
1.5 cal solution of Eq. (2.7). The results are in ex-
cellent agreement for the concentration value
t .= Z studied.
- o > o ° ° ° o o
0.6 — Q ° °
° ++
] T 1 1 ¥ T T | T
0 10 20 30 50
r (&)
27 e @ lny y | ~Iny — x( e *
Q;; n dy— |exp |e; —— ex —1
U( )= K3x§ k[fo Y y P Iny ]f Iny +x P €k s

—z;z;2}(eq ) [ —e "2+ 1+42(x —t)](e_"/Z)} y Egx = —Eqy -

This integral has the property of relating C,(x’) and
Ci(|Ix—x']) functions over the range (0,e *). This
would be an interesting formula for which detailed results
were found numerically by applying the trapezoidal in-
tegration rule. This method is a possible alternative and
has the advantage that less computer memory is needed
and that it is easier to incorporate different F;(x) with
different valences. It is also noted that for the parameters
used in the present calculations, no divergence problems
were found by the method outlined here.

B. Results

The BDF for a number of PM 1-1 and 2-2 electrolytes
was published quite some years ago [11] and here we dis-
cuss primarily some of the most interesting features

(3.4

found for 1-1, 2-1, and 2-2 electrolytes in the PM with
equal ion sizes. For this reason, results for these valence
types electrolytes are of great importance. This is due to
the fact that the stronger interactions offer a more
stringent test of our numerical solution of Q,;;(x). The
function Q;;(x) defined by the result (3.4) was solved nu-
merically and after substituting into the density expan-
sion Eq. (2.7), the numerical results were compared with
the HNC approximations [11] and MC calculations. In
Figs. 3 and 6 the functions F_, and F, , for 1-1 and 2-1
electrolytes with C=0.009 11M are shown. First, it is
noted that the results obtained by Egs. (2.38) and (2.39)
are in excellent agreement with the numerical solution of
Eq. (2.7) for the concentration value studied. For com-
parison we also show the MC results for the most dense
systems. In Figs. 1-5 the numerical solution of the BDF

F, ()

FIG. 4. F,, and F_, functions for 1-1
electrolytes. Dashed lines and full lines indi-
cate the numerical solution of Eq. (2.7) for
¢=0.103 76 M and 1.0001M, respectively. Cir-
cles and squares indicate the Monte Carlo
points.
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FIG. 5. Like and unlike binary distribution functions F,
and F_, for the 1-1 primitive model at 0.42502M. DHX re-
sults, Eq. (2.39), and the numerical solution of Eq. (2.7) are indi-
cated by dashed lines, dot-dashed lines, and full lines, respec-
tively.

is shown for a 1-1 electrolyte with C=0.009 11M,
0.10376M, 0.42502M, 1.0001M, and 1.9676M. It is also
obvious that the numerical solution curves represented by
F , values agree more closely with the MC points than
the F__ values at all the above-mentioned concentra-
tions, but this agreement is worse for the concentration
1.9676M. On the other hand, it is apparent from Figs. 3
and 4 that the numerical solution of the BDF is in closest
agreement with the MC points.
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Our numerical solution for the BDF, in the case of 2-1
electrolytes (C=0.009 11M and 1.9676M), is shown in
Figs. 6 and 7, respectively. However, at high concentra-
tion (C=1.9676M), Fig. 7 shows the variation in the nu-
merical solution results that is observed when compared
with the DHX results and Wheaton’s approximations for
the BDF.

The 2-2 results are most interesting and are displayed
in Figs. 8 and 9. Similar comparisons were made for the
2-2 electrolyte with concentrations (C =0.0625M and
2.0M). This can readily be seen from Figs. 8 and 9,
where the corresponding grand canonical MC results of
Valleau, Cohen and Card [11] are also indicated for com-
parison. Clearly the BDF results show poor agreement
with the MC points. However, the CM results and DHX
curves are somewhat better than the numerical solution
curves compared with the MC points. For further com-
parison we also examine the HNC results for the BDF
function with our numerical solution of Eq. (2.7). It is
clear from the results in Figs. 8 and 9 that some devia-
tions are found between the numerical solution and the
HNC results. Focusing on the like and unlike charge
correlations, i.e., on F_, and F , in the present case of
interest, one may expect that the SAC results are not
completely sufficient, as is clear from the figures. This
may be due to some aspects of the solution structure of
models for 2-2 electrolytes in the higher concentration
range. On the other hand, in the case of like ions, con-
cerning F ., we observed that our numerical results are
superior to those of Wheaton’s results, for 1-1 electro-
lytes, while this does not hold for the 2-2 electrolytes.
These deviations could be due to differences between the
PM and CM approximations. This might explain the
difference between the numerical solution curves, MC
points, and Wheaton’s curves.

In conjunction with the previous results of the BDF, it
is seen that the CM results for 1-1 electrolytes in the case
of different ions (i.e., F_,) are in surprisingly good
agreement with the MC points. Thus it seems as if the
CM in fact offers a better description of F__ than the
PM represented by Eq. (2.7) and DHX results. More-

—+

Ry *°7

FIG. 6. Like and unlike binary distribution
functions F, and F_ for the 2-1 primitive
model at 0.009 11M. Full lines indicate DHX
results, Eq. (2.39), and the numerical solution
of Eq. (2.7). The results show the same quali-
tative behavior as in Fig. 3.
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FIG. 7. Like and unlike binary distribution
functions F, , and F_ for the 2-1 primitive
model at 1.9676 M. DHX results, Eq. (2.39),
and the numerical solution of Eq. (2.7) are in-

0.4 =

6.2 4

dicated by dashed lines, dot-dashed lines, and
full lines, respectively.

r(R)

over, Figs. 1-6 and 8 show that the PM and CM approx-
imations give closely corresponding results as measured
by F_,, over a wide range of concentrations. It has al-
ready been shown that all of the F . functions, investi-
gated in Figs. 1-9, are increasing functions with distance
at least in the intervals shown here. This implies that the
repulsive electrostatic forces dominate whenever two
anions are close to each other.

IV. CONCLUSION

In light of the results outlined above and the interest in
evaluating the numerical results of Q,;(x) in this paper,

we present a brief conclusion for the main results ob-
tained by solving ;;(x) by two different methods. The
first method is the analytical method, discussed in Sec. II.
This method leads to some difficulties. Attention must be
paid to the effect of truncation error in the evaluation of
the numerical results for each term in the expansion
(2.37). The convergence of these terms, for 2-1 and 2-2
electrolytes, to the final numerical result of the expansion
(2.37) is slow. We also evaluated Q;;(x) via a numerical
solution method that was discussed in Sec. III. The nu-
merical solution outlined here greatly facilitates the solu-
tion of Q;;(x) for the PM of 1-1, 1-2, and 2-2 electrolyte
solutions for concentrations between 0.009 11M and
2.0M. The numerical solution presented in this paper

F, (0

FIG. 8. Binary distribution functions F
and F_, for the 2-2 primitive model at
0.0625M. The MC results are indicated by cir-
cles. DHX results, Eq. (2.39), and the numeri-
cal solution of Eq. (2.7) are indicated by

dashed lines, dot-dashed lines, and full lines,
respectively. Dotted lines indicate the HNC
results.
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has no difficulties and the numerical results are found to
be in excellent agreement with the MC points for 1-1
electrolytes for some concentration values. Moreover,
the numerical solution of Q;(x) is known exactly over
the entire range shown in Eq. (3.4). This equation enables
the accuracy of the numerical technique to be evaluated
over the entire range. From the comparison between the
analytical and numerical solution of the BDF given by
Eq. (2.7), it is clear that the numerical solution of Eq.
(2.7) is very accurate compared with its approximate
analytical solution.

APPENDIX: SIMPLIFIED PROPERTIES
FOR THE DISTRIBUTION FUNCTION

The function ,;(x) will then be transformed to a form
more useful by making use of the assumptions
ax=y, yx=z. (A1)
Moreover, the following relations in the special case of
symmetric electrolytes are assumed to be valid:
n1:n2=no N allzalz =a , =t22:t .

=ay 11 =i

(A2)

It is clear from the result (2.36) that the function Q;(x)
connects a particle of species i at location 1 and a particle
of species j at location 2 with a particle of species k at lo-
cation 3. Proceeding with a summation over the index k
and taking into consideration the previous conceptions
(A1) and (A2), Eq. (2.36) can be reformulated as

SECOND APPROXIMATION COEFFICIENT FOR THE BINARY ...
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r (&)

FIG. 9. Binary distribution functions F, , and F_ for the
2-2 primitive model at ¢ =2.0M. Symbols have the same mean-
ing as in Fig. 8.

Q,(x)= 2 b (m)y s, H L) (1] e as " F32)
X n()x mzosgongorz ' ( _+_1)'(m+1 é— ay y,z
2 2 2u
+3 3 ) ! 1 N H Nz, 2 )a—zuﬂ(y) a=n+1, y=m+1
<< (n+10 | | & SR Y ’ ’ ’
(A3)
where
— &g — — —
n—; , E=t/x , at=E , yt=€&z, (A4)
F(p,z)= |e Y178 cosh(§y)+§sinh(§y) —20=8) | cosh(£z)+ = s1nh(§z) /(z —y? (A5)
and
By)=[(e ¥ /y)Ne*—1)+(e 7" 72)(1-26)]/y (A6)
The valence factors are defined by
FATz21,25)=v(—22)(—212,) + vy —23)(—2,2,)" (A7)

and

HNzy,2,)=(

—2,2,)vi(—z})*+ v, (—23)°] .

(A8)
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Our method of calculating the numerical values of };;(x) is based on the expansion as a convergent power series in the
7 parameter. For different n and m values the function Q;;(x) will be written in terms of a set of functions denoted by

V¥, n and @, as
Q;(x)= ——no(nt)2 23 3 HNz,z)¥, 02T S HN 22,0 |, n=a—1, m=y—1,
n=0m=0 n=1
(A9)
where
W, ()= — m), 1/1” ). (A10)
n,m\Ys2 (m+1)‘s§0 1 é_ y,z
The function 1/}‘,,3)( y,z) takes the form
1
(s) 7S)
v (y,2)= +1)| 2 o £ 7‘ »2), (A11)
in which the function 7(;" (y,z) is defined by
Fr(y,2)=-L L 55,2 | (A12)
yz Y a r a K Y,z
In a similar manner one can establish that for n > 1,
(n) 1 2 1 2u
= - - | B*y). 13
=2 0| i | |E ) (Al13)

It is readily seen that the function $§,2“’( y) represents the partial derivative of order 2u for B(y) with respect to the in-
dependent variable y.
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